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Abstract 
Gene function curation via Gene Ontology (GO) annotation is a common task among Model 
Organism Database (MOD) groups. Due to its manual nature, this task is time-consuming and 
labor-intensive, and thus considered one of the bottlenecks in literature curation. There have 
been many previous attempts of automatic identification of GO terms and associated information 
from full text. However, few systems have delivered an accuracy that is comparable to human 
annotators. One recognized challenge in developing such systems is the lack of marked passage-
level evidence text that provides the basis for making GO annotations. To this end, we aim to 
create a corpus that includes the GO evidence text along with the three essential elements of GO 
annotations: 1) a gene or gene product, 2) a GO term and 3) a GO evidence code. To ensure our 
results are consistent with real-life GO annotation data, we recruited a team of eight professional 
GO curators from the biocuration community, and asked them to follow their routine GO 
annotation protocols. With the aid of a web-based annotation tool, our annotators marked up 
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nearly 4,000 unique text passages in 200 full-text articles where on average each unique GO term 
is annotated with four different evidence text passages. Further, our corpus analysis shows that 
most of the evidence text occurs in the body of the article while only as little as 12% appears in 
the abstracts. This result demonstrates the necessity of text mining of full text for finding GO 
terms. Through its use as the official data set for the BioCreative IV GO (BC4GO) task, we 
expect our unique BC4GO corpus to become a valuable resource for the BioNLP research 
community.  
 
Introduction 
The Gene Ontology (GO) (http://www.geneontology.org) is a controlled vocabulary for 
standardizing the description of gene and gene product attributes across species and databases 
(1). Currently, there are about 40,000 GO terms that are organized in a hierarchical manner under 
three GO sub-categories: molecular function, biological process and cellular component. Since 
its inception, GO terms have been used in over 126 million annotations to over 9 million gene 
products (2). The accumulated GO annotations have been shown to be increasingly important in 
an array of different areas of biological research such as high-throughput omics data analysis and 
the study of developmental biology (3-5).  
 
Among the 126 million GO annotations, most are derived from automated techniques such as 
mapping of GO terms to protein domains, motifs (InterPro2GO) (6) or corresponding concepts in 
one of the controlled vocabularies by UniProt (7); only a very small portion (1.1 million) are 
derived from manual curation of published experimental results in the biomedical literature (8). 
While the former approach is efficient in assigning higher-level GO terms, the latter provides 
more reliable and detailed GO annotations that are critical for the kinds of analyses mentioned 
above. Generally speaking, the manual GO annotation process first involves the retrieval of 
relevant publications. Once found, the full text is manually inspected to identify the gene product 
of interest, the relevant GO terms, and the evidence code to indicate the type of supporting 
evidence, e.g. mutant phenotype or genetic interaction, for inferring the relationship between a 
gene product and a GO term. Such a process is time-consuming and labor intensive, and thus 
many MODs are confronted with a daunting backlog of GO annotation. For instance, in recent 
years, TAIR’s curation team has been able to curate only a fraction of newly published articles 
that contain information about Arabidopsis genes (<30%) (9). It is thus clear that the manual 
curation process requires computer assistance, and this is seen in a growing interest in, and need 
for semi- or fully automated curation pipelines for assisting biocuration (10-20). In particular, a 
number of studies (21-29) have attempted to (semi-)automatically predict GO terms from text 
including a previous BioCreative challenge task (30). However, few studies have proven to be 
useful with regard to assisting real world GO curation. Based on a recent study, enhanced text-
mining capabilities to automatically recognize GO terms from full text remains one of the most 
in-demand tasks among the biocuration community (31).  
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As concluded in the previous BioCreative task (30,32), one of the main difficulties was “the lack 
of a high quality training set consisting in the annotation of relevant text passages”. Such a 
training set in practice provides the evidence for human curators to make associated GO 
annotations. To advance the development of automatic systems for GO curation, we propose to 
create a corpus that includes the GO evidence text along with three essential elements of GO 
annotations: 1) a gene or gene product, 2) a GO term (e.g., receptor-mediated endocytosis), and 
3) a GO evidence code (e.g., Inferred from Mutant Phenotype (IMP)). The evidence texts for GO 
annotations may be derived from a single sentence, or multiple continuous, or discontinuous, 
sentences. The evidence for a GO annotation could also be derived from multiple lines of 
experimentation, leading to multiple text passages in a paper supporting the same annotation. 
Since many learning-based text-mining algorithms rely on both positive and negative training 
instances, it is important to be as thorough as possible when manually annotating sentences. It is 
therefore important to capture all of the curation-relevant sentences to ensure the positive and 
negative sets are as distinct as possible.  
 
The exhaustive capture of evidence text in full-length articles makes our dataset, namely the 
BC4GO corpus, unique among the many previously annotated corpora (e.g.(33-36)) for the 
BioNLP research community. To our best knowledge, BC4GO is the only publicly available 
corpus that contains textual annotation of GO terms in accordance with the general practice of 
GO annotation (8) by professional GO curators. For instance, while in a previous study (17) 
every mention related to a GO concept was annotated, in BC4GO we have annotated only those 
GO terms that represent experimental findings in a given full-text paper.  
 
Methods and Materials 
 
Annotators  
Through the BioCreative IV User Advisory Group, we recruited eight expert curators from five 
different MODs: FlyBase (2 curators), MaizeGDB (1 curator), RGD (3 curators), TAIR (1 
curator), and WormBase (1 curator). All our curators are experienced in GO manual annotation.  
 
Annotation Guidelines 
For achieving consistent annotations between annotators, the task organizers followed the usual 
practice of corpus annotation (33-37): first we drafted a set of annotation guidelines and then 
asked each of our annotators to practice them on a shared article as part of the training process. 
The results of their annotations on the common article were shared among all annotators and 
subsequently the discrepancies in their annotations were discussed. Based on the discussion, the 
annotation guidelines were revised accordingly. For brevity, we only discuss below the two 
kinds of evidence text passages we chose to capture. The detailed guidelines are publicly 
available at the corpus download website: http://www.biocreative.org/resources/corpora/bc-iv-
go-task-corpus/ 
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1. Experiment Type: These sentences describe experimental results and can be used to make a 
complete GO annotation (i.e., the entity being annotated, GO term, and GO evidence code). The 
annotation of such sentences is required throughout the paper, including the abstract, and any 
supporting summary paragraphs such as ‘Author summary’ or ‘Conclusions’.  
 
Ex1: On the other hand, the amount of UNC-60B-GFP was reduced and UNC-60A-type mRNAs, 
UNC60A-RFP and UNC-60A-Experiment, were detected in asd-2 and sup-12 mutants (Figure 
2H, lanes 2 and 3), consistent with their colour phenotypes shown in Figure 2C and 2A, 
respectively. (PMC3469465) 
 
This sentence contains information about: 
 
The gene/protein entities: asd-2 and sup-12 
GO term: regulation of alternative mRNA splicing, via spliceosome (GO:0000381) 
GO evidence code: Inferred from Mutant Phenotype (IMP) 
 
2. Summary Type: Distinct from statements that describe the details of experimental findings, 
papers also include many statements that summarize these findings. These summary statements 
don’t necessarily indicate exactly how the information was discovered, but often contain concise 
language about what was discovered. Such sentences are helpful to capture because they may 
inform GO term selection in a concise manner despite the lack of information about evidence 
code selection.  
 
Ex2: Taken together, our results demonstrate that muscle-specific splicing factors ASD-2 and 
SUP-12 cooperatively promote muscle-specific processing of the unc-60 gene, and provide 
insight into the mechanisms of complex pre-mRNA processing; combinatorial regulation of a 
single splice site by two tissue-specific splicing regulators determines the binary fate of the 
entire transcript. (PMC3469465) 
 
The gene/protein entities: ASD-2 and SUP-12 
GO term: regulation of alternative mRNA splicing, via spliceosome (GO:0000381) 
GO evidence code: N/A 
 
Article Selection 
The 200 articles in the BC4GO corpus are chosen from annotators’ existing annotation workload 
at their respective MODs. Such a protocol minimizes the additional workload to our curators 
while at the same time guarantees the curated papers are representative of real-life GO 
annotations. Another requirement is that annotated articles are published in a list of select 
journals (e.g. PLoS Genetics) in PubMed Central (PMC) that allow free access and text analysis.  
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Annotation Tool 
A web-based annotation tool was developed for use in the annotation process as shown below in 
Figure 1. The tool allows the upload of full text articles in either HTML or XML formats and 
subsequently displays the article in a Web browser. Currently, the tool allows the annotator to 
select and highlight a single sentence, or multiple sentences (regardless of whether they are 
contiguous or not) as GO evidence text. When a sentence is highlighted, a pop-up window 
appears for annotators to enter required GO annotation information: a GO term, a GO evidence 
code, and associated gene(s). The tool also allows the annotators to preview their annotations 
before committing them to the database. Annotation results of each paper can be downloaded as 
HTML files.  
 

 
Figure 1. Screenshot of the annotation tool. When a line or more of text is highlighted, a pop-up window 
appears where annotation data is entered. 
 
Final Data Dissemination 
Both full-text articles and associated GO annotations (downloaded from PMC and the annotation 
tool, respectively) were further processed before releasing to the task participants. Specifically, 
we chose to format our data using the recently developed BioC standard for improved 
interoperability (38). First, for the 200 full-text articles, we converted their XMLs from the PMC 
format to the BioC format. Next, we extracted annotated sentences from downloaded HTML 
files and identified their offsets in the generated BioC XML files. Finally, for each article we 
created a corresponding BioC XML file for the associated GO annotations. Figure 2 shows a 
snapshot of our final released annotation files where one complete GO annotation is presented 
with the BioC format. For the gene entity, we provide both the gene mention as it appeared in the 
text and its corresponding NCBI Gene identifier.  
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Figure 2. A sample of GO annotation in BioC format. 
 
Results and Discussion 
 
Corpus Statistics  
The task participants are provided with three data datasets comprising a total of 200 full-text 
articles. Table 1 shows the number of articles curated by each MOD. On average, each curator 
contributed about 25 articles for the task during this time period.  
 
Table 1. Number of curated articles per MOD. 
Data Set FlyBase MaizeGDB RGD TAIR WormBase Total 
Training Set 19 21 43 10 7 100 
Development Set 8 5 25 4 8 50 
Test Set 12 4 20 7 7 50 
Subtotal per team 39 30 88 21 22 200 
 
Table 2 shows the main characteristics of the BC4GO corpus. Each annotation includes four 
elements: the gene/protein entity, GO term, GO evidence code, and evidence text (See Figure ). 
Note that one text passage can often provide evidence for annotating more than one gene, as well 
as more than one GO term. Therefore, we show in the last column of Table 2 the counts of 
evidence text passages in three different ways. The first number shows that the total number of 
text passages with respect to GO annotations: Over 5,000 text passages were used in the 
annotation of 1,311 unique GO terms. So on average, each GO term is associated with four 
different evidence text passages in our corpus. The second number (5,162) shows the total 
number of text passages with respect to different genes: For each of the 665 unique genes in our 
corpus, there are about 7.8 associated text passages. Finally, the last number is the total number 
of unique text passages annotated in our corpus regardless of their association to either gene or 
GO terms.   
 



!

! 134!

Table 2. Overall statistics of the annotated corpus. 

Data Set Articles 
Genes 
(unique)  

GO terms 
(unique)  

Evidence text passages  
w.r.t. GO/Gene/Unique 

Training Set 100 300 566 2,213/2,234/1,704 
Development Set 50 171 367 1,299/1,247/963 
Test Set 50 194 378 1,763/1,681/1,253 
Total 200 665 1,311 5,275/5,162/3,920 
 
From Table 2, we can compute that the average number of genes annotated in each article is 3.3, 
and the average number GO terms associated with each gene is 2.0 in our corpus. Furthermore, 
as mentioned before, we have annotated two types of evidence text, depending on whether they 
contain experimental information or not. Accordingly, the two kinds are distinguished in our 
annotations by the presence or absence of associated evidence code. For the total 3,920 unique 
pieces of evidence text, the majority (~70%) of them contain experimental evidence.  
 
The location of evidence text in the paper 
Figure 3 shows the proportion of all evidence text in different parts of the article. As can be seen, 
the most informative location for extracting GO evidence text is the Results section, followed by 
the Discussion Section. Some GO evidence text also appears in the Table or Figure legend. 
Within the full text article, the Introduction/Background and Methods sections contain the least 
amount of information for complete GO annotation. Figure 3 also shows the limitation of using 
article abstracts for GO annotation: only 11.65% of the annotated text is found in the Title and 
Abstract combined. This finding further confirms the importance of using full text for GO 
annotation.  
 

  
Figure 3. The proportion of annotated evidence text in different parts of the article. 
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Conclusions and Future Work 
Through collaboration with professional GO curators from five different MODs, we created a 
corpus for the development and evaluation of automated methods for identifying GO terms from 
full-text articles. The resulting BC4GO corpus is large-scale and the only one of its kind. We 
expect our BC4GO corpus to become a valuable resource for the BioNLP research community. 
We hope to see improved performance and accuracy of text mining for GO terms through the use 
of our annotated corpus in the BioCreative IV GO task and beyond.  
 
There are several limitations of this work that warrant further investigation. First, in order to 
ensure the positive and negative sentences are as distinct as possible, we asked our annotators to 
mark up every occurrence of GO evidence text. As a result, it greatly increased the annotation 
workload for each individual annotator. Meanwhile, to maximize the number of annotated 
articles, we chose to assign one annotator per article. In other words, our articles are not double 
annotated. Second, despite all our best efforts in ensuring consistent annotations (e.g. creating 
annotation guidelines, and providing annotator training), there will always be variation in the 
depth of annotation between curators and organisms. For instance, there may be gray areas where 
some curators will select a sentence relating to a phenotype as a GO sentence, while others do 
not. In the future, we plan to assess the inter-annotator agreement for our corpus.   
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